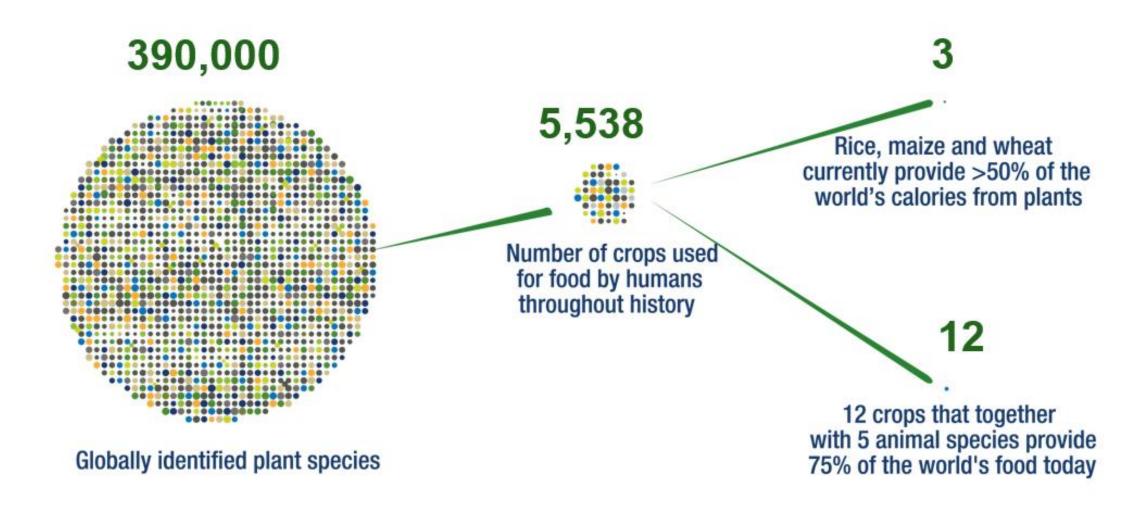


From genebanks to farms: how citizen science is transforming crop variety evaluation through the tricot approach

Kauê de Sousa

Photo: Neil Palmer/Crop Trust


In this presentation

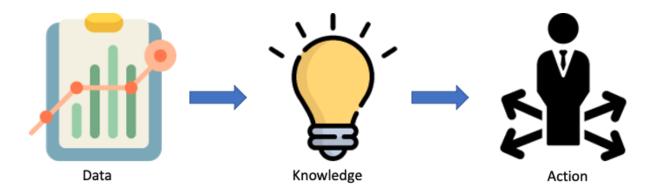
- Challenges that drive our research
- The tricot approach
- Five case studies and lessons

Some slides borrowed from Jonathan Steinke and Jacob van Etten, the forerunners in this approach

Challenges that we want to address...

Challenge #1: Loss in agrobiodiversity

Challenge #2: Climate Change



Challinor et al. (2016) *Nat. Clim. Change* **6**:954-958 Tollenar et al. (2017) *Nat. Clim. Change* **7**:275-278 Deutsch et al. (2018) *Science* **361**(6405):916-919

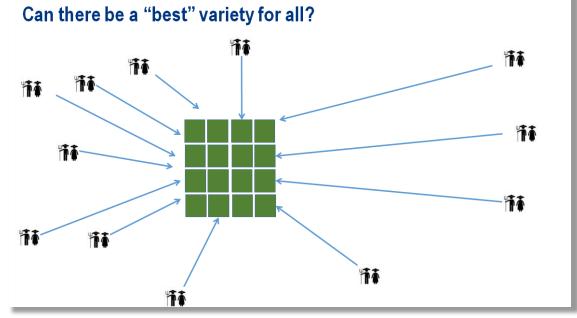
Challenge #3: Data capturing

Geographically dispersed trials with limited opportunity to aggregate and **repurpose data**

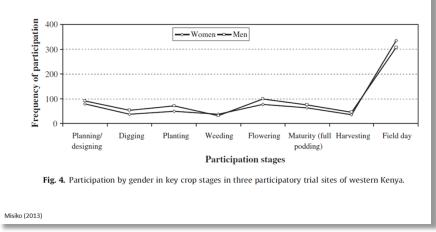
Little long-term focus on the opportunity that **well structured** data can provide

"data-driven": means that progress in an activity is compelled by data, rather than by intuition or by personal experience.

Increased agrobiodiversity is part of the solution


- Different varieties have different climatic adaptation
- Weather extremes will not affect all varieties equally
- Growing multiple varieties together = climate resilience

How can we support farmers to find varieties that match the conditions at their farm?



66

Inconsistent observations

Rhoades and Booth (1982) Agricultural Administration <u>https://doi.org/10.1016/0309-586X(82)90056-5</u> Misiko (2013) Agricultural Systems <u>https://doi.org/10.1016/j.agsy.2013.04.004</u>

Why do farmers lack easy access to diversity?

Seed producers

Incentives to produce only few varieties at large scale Lack of information on variety demand

Farmers

Lack of information about available varieties "Seeing is believing" / Learning-by-doing approach

Possible solution: Farmer-managed variety trials powered by citizen science

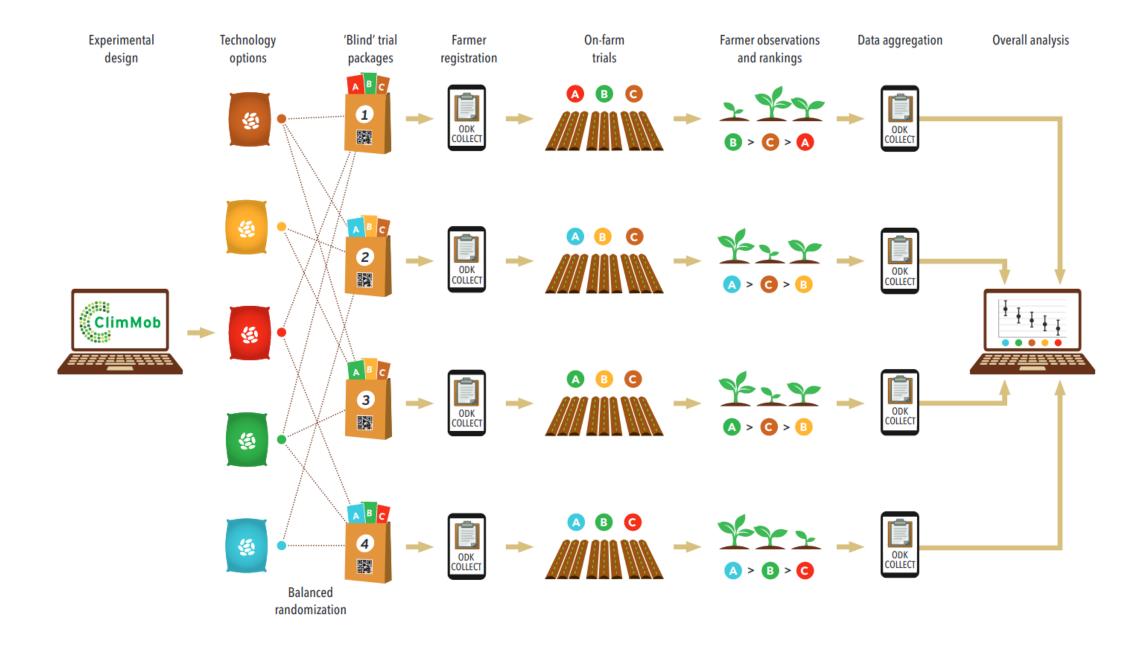
Thiele et al. (2020) Int. J. Food Sci. <u>https://doi.org/10.1111/ijfs.14684</u>

Triadic comparison of technologies (tricot) is a citizen science approach that can help bringing diversity to farms...

The best of existing approaches

Citizen science – high volume of data generated by citizens (not formally trained in the topic)

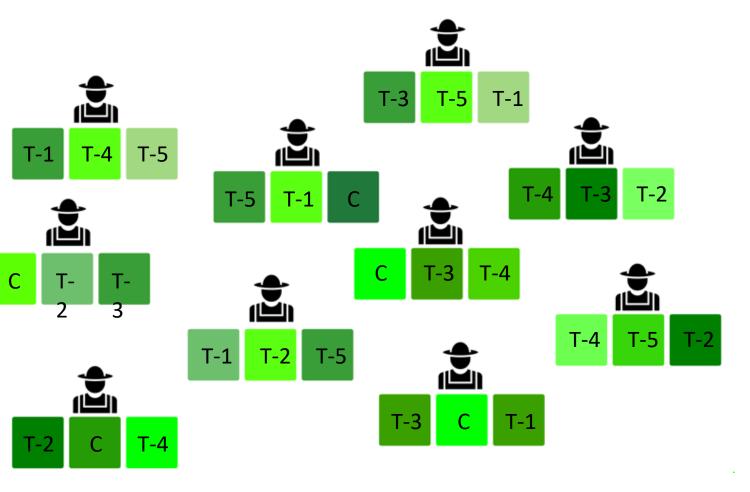
Digital agriculture – trial design, management, data collection and analysis supported by novel digital tools



On-farm testing – capture the performance of tested technologies under real conditions

Participatory research – farmers as active participants (user-centred desing)

de Sousa et al. (2024) Agronomy for Sustainable Development <u>https://doi.org/10.1007/s13593-023-00937-1</u> van Etten et al. (2016) Experimental Agriculture <u>https://doi.org/10.1017/S0014479716000739</u>



de Sousa et al. (2024) Agronomy for Sustainable Development <u>https://doi.org/10.1007/s13593-023-00937-1</u> van Etten et al. (2016) Experimental Agriculture <u>https://doi.org/10.1017/S0014479716000739</u>

Incomplete block design

item_A item_B item_C
 <chr> <chr> <chr> <chr> <chr> <chr> </chr>

- 1: Tech-1 Tech-4 Tech-5
- 2: Check Tech-2 Tech-3
- 3: Tech-2 Check Tech-4
- 4: Tech-3 Tech-5 Tech-1
- 5: Tech-5 Tech-1 Check
- 6: Tech-4 Tech-3 Tech-2
- 7: Tech-1 Tech-2 Tech-5
- 8: Check Tech-3 Tech-4
- 9: Tech-3 Check Tech-1
- 10: Tech-4 Tech-5 Tech-2

Tricot in practice

Pruebe trea nuevas variedades de frijol

Participe on on proyects the investigation care oppose two majorine visitedades de trad sere cada zone tradems de tradems.

R-35

Photo: Jonathan Steinke/Bioversity International

Surphy.

porticipative messes de trillet variedades de trillet

0

BC

and the

ED DAION ollaje

Torjeta de observacion

El mulor follale

100

Trial setting

- Side by side
- On the same day
- Small to allow comparison
- Same management as the main plot (preferably)

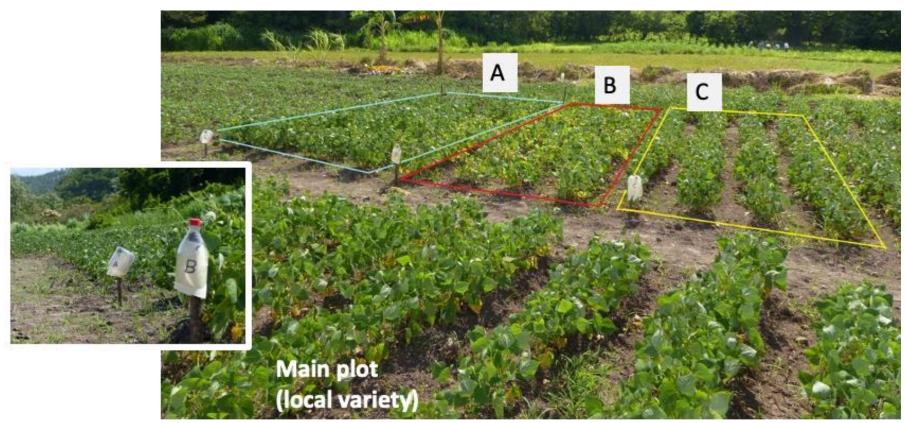
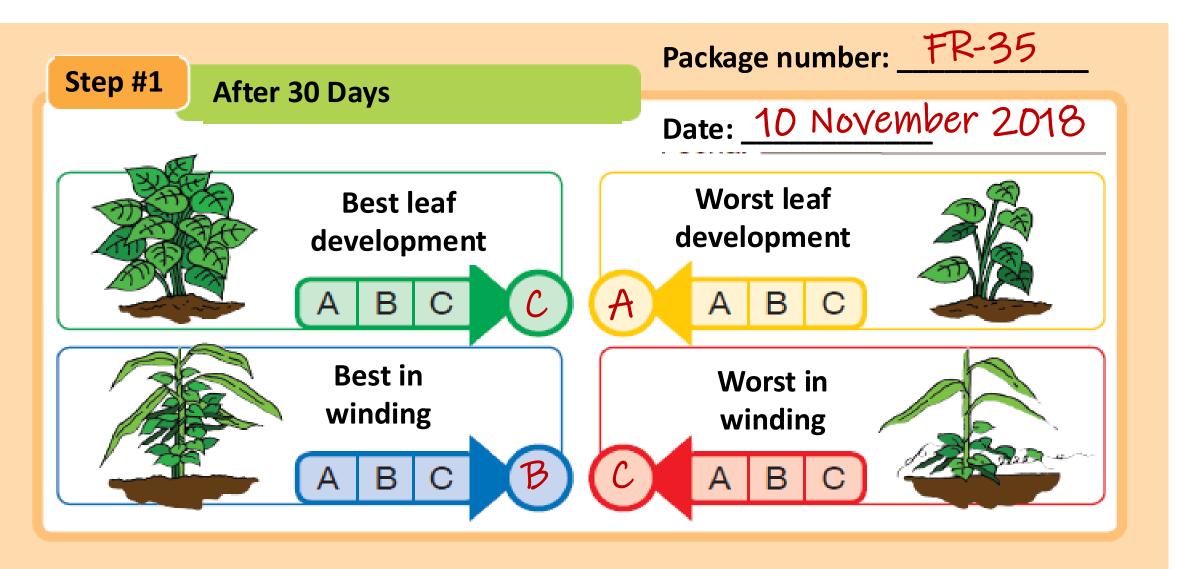


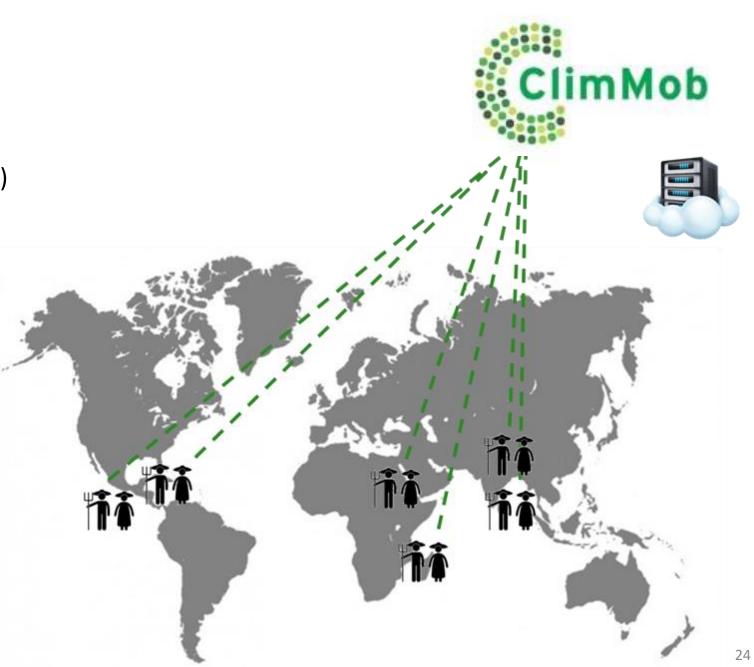


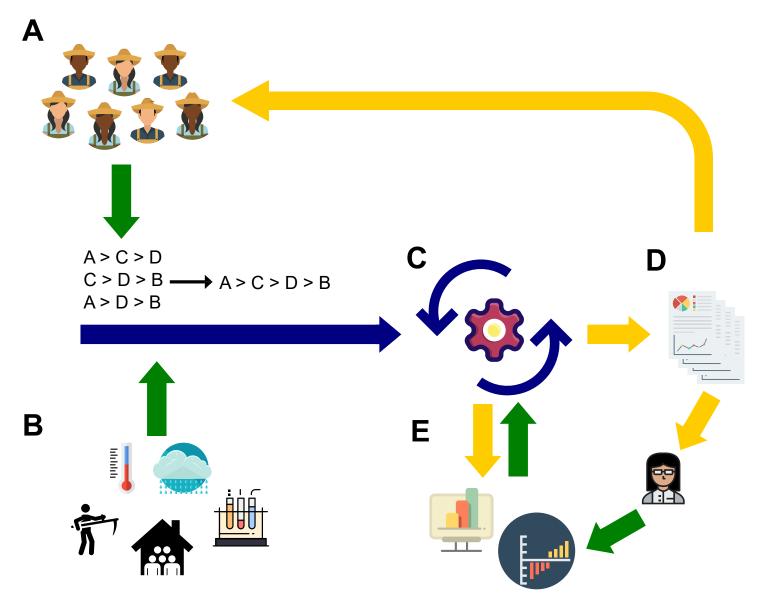
Photo: Neil Palmer/Crop Trust

Farmers make simple observations for different criteria



Farmers make simple observations for different criteria

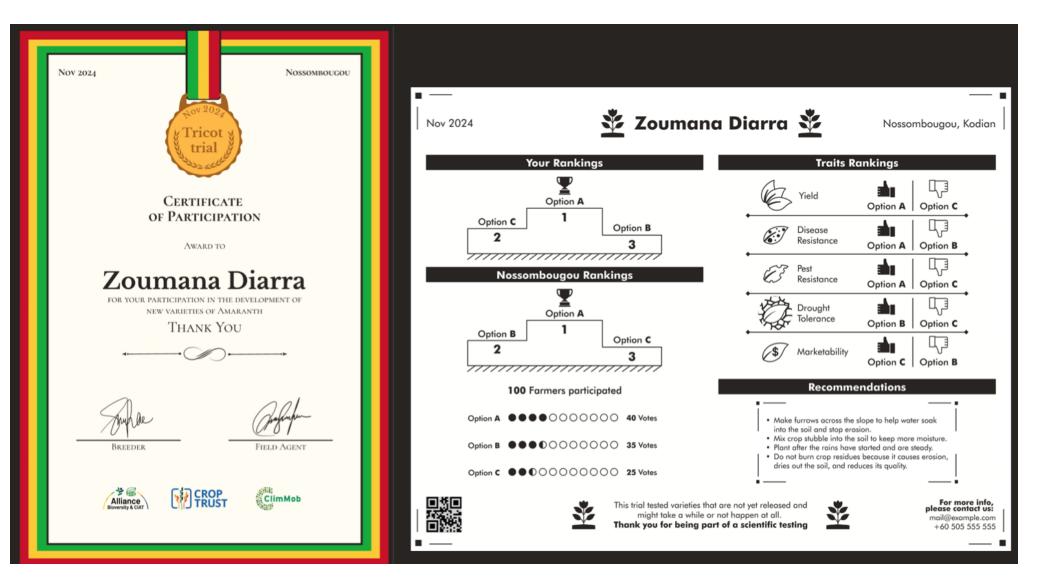

Farmers make simple observations in different criteria



Data collection

- 1. ODK App (only Android phones)
- 2. Data collected on paper and submitted via Enketo

Data workflow

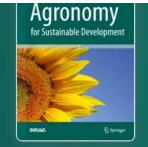

- (A) Multiple participants contribute by performing small, decentralized tasks (e.g., ranking three options).
- (B) Supplementary data are integrated from external sources (e.g. weather, socioeconomic, breeding data).
- (C) Aggregated and enriched data are analyzed using the ClimMob platform.
- (D) Automated reports are generated and delivered to trial managers and participants.
- (E) Trial managers can request additional analysis to test new hypotheses, try new analytical approaches and produce scientific papers. Validated innovations from (E) are integrated back into the main analysis pipeline (C), continuously enhancing automation and scalability.

Feedback to farmers

It is an integral and important step on tricot. It needs to be on your budget from the beginning.

Feedback to farmers

Built on a multi-institutional partnership


The tricot approach: an agile framework for decentralized on-farm testing supported by citizen science. A retrospective

 Review Article | Open access | Published: 25 January 2024

 Volume 44, article number 8, (2024)
 Cite this article

Download PDF 坐

You have full access to this open access article

Agronomy for Sustainable Development

Aims and scope \rightarrow

Submit manuscript \rightarrow

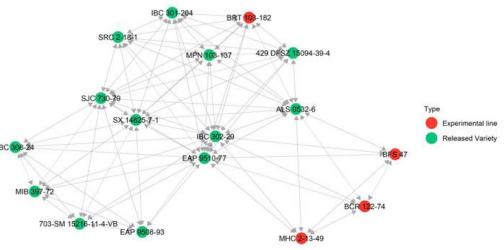
Kauê de Sousa 🖂, Jacob van Etten, Rhys Manners, Erna Abidin, Rekiya O. Abdulmalik, Bello Abolore, Kwabena Acheremu, Stephen Angudubo, Amilcar Aguilar, Elizabeth Arnaud, Adventina Babu, Mirna Barrios, Grecia Benavente, Ousmane Boukar, Jill E. Cairns, Edward Carey, Happy Daudi, Maryam Dawud, Gospel Edughaen, James Ellison, Williams Esuma, Sanusi Gaya Mohammed, Jeske van de Gevel, Marvin Gomez, Joost van Heerwaarden, Paula Iragaba, Edith Kadege, Teshale M. Assefa, Sylvia Kalemera, Fadhili Salum Kasubiri, Robert Kawuki, Yosef Gebrehawaryat Kidane, Michael Kilango, Heneriko Kulembeka, Adofo Kwadwo, Brandon Madriz, Ester Masumba, Julius Mbiu, Thiago Mendes, Anna Müller, Mukani Moyo, Kiddo Mtunda, Tawanda Muzhingi, Dean Muungani, Emmanuel T. Mwenda, Ganga Rao V. P. R. Nadigatla, Ann Ritah Nanyonjo, Sognigbé N'Danikou, Athanase Nduwumuremyi, Jean Claude Nshimiyimana, Ephraim Nuwamanya, Hyacinthe Nyirahabimana, Martina Occelli, Olamide Olaosebikan, Patrick Obia Ongom, Berta Ortiz-Crespo, Richard Oteng-Fripong, Alfred Ozimati, Durodola Owoade, Carlos F. Quiros, Juan Carlos Rosas, Placide Rukundo, Pieter Rutsaert, Milindi Sibomana, Neeraj Sharma, Nestory Shida, Jonathan Steinke, Reuben Ssali, Jose Gabriel Suchini, Béla Teeken, Theophilus Kwabla Tengey, Hale Ann Tufan, Silver Tumwegamire, Elyse Tuyishime, Jacob Ulzen, Muhammad Lawan Umar, Samuel Onwuka, Tessy Ugo Madu, Rachel C. Voss, Mary Yeye & Mainassara Zaman-Allah ^ Show fewer authors

Use our pre-submission checklist \rightarrow

Avoid common mistakes on your manuscript.

Sections	Figures	References					
Abstract							
Introduction							
The tricot approach							
A proof of concept							
Data-driven approach							
Mainstreaming in breeding programs: three case							
Challenges in mainstreaming							
Informing product design							
Gender and socio-economic heterogeneity							

de Sousa et al. (2024) Agronomy for Sustainable Development <u>https://doi.org/10.1007/s13593-023-00937-1</u>


Case studies

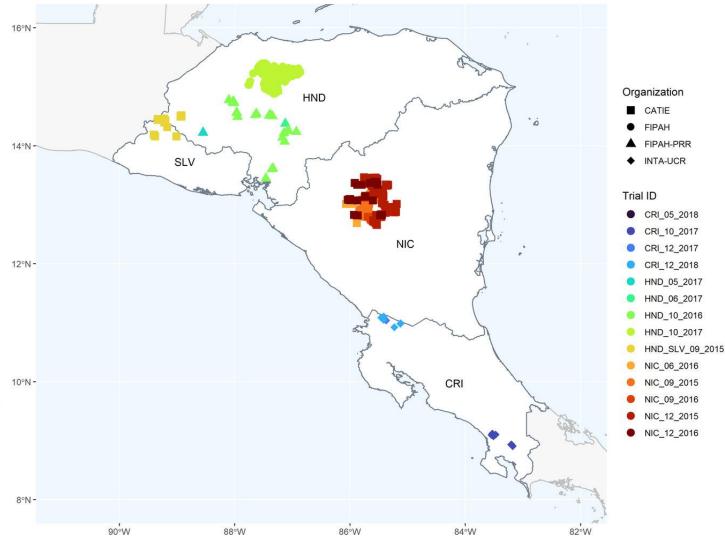
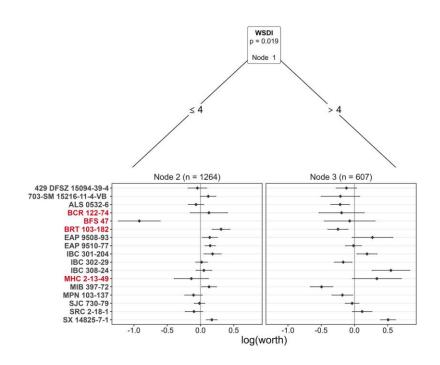
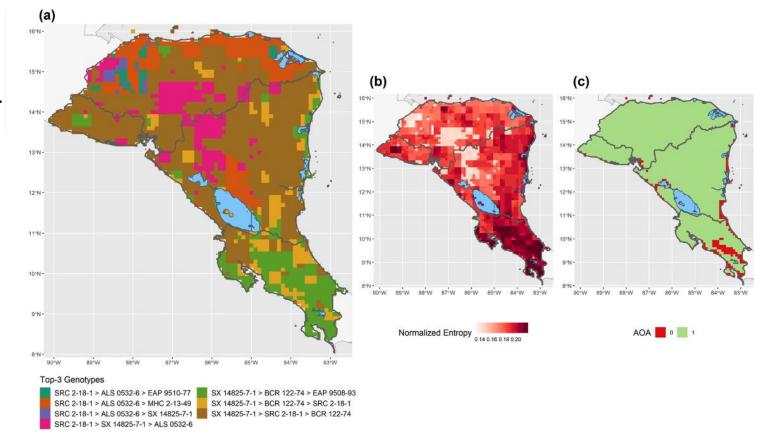


Photo: Neil Palmer/Crop Trust

#1 Variety portfolios

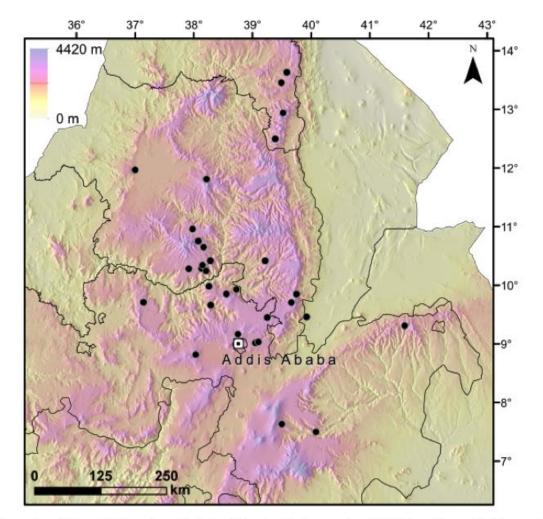

Common beans Central America (4 countries) 17 genotypes 12 seasons 3,550 farmers (~250 per season)



#1 Variety portfolios

Location-specific insights on genotype performance and environmental interaction.

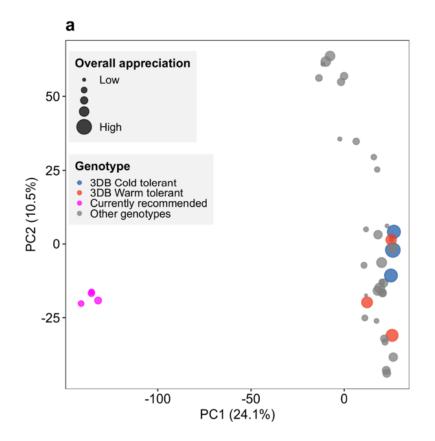
FIGURE 4 (a) Map of genotypes with the higher probability of being in the top three across the study region for the Primera season. (b) Normalized entropy (0–1) of the genotypes with higher probability of being in the top three; the legend scale is constrained to easily visualize the differences. (c) Area of applicability (AOA) for the Primera season; areas in red denote no applicability of the model


#2 Locally adapted genotypes

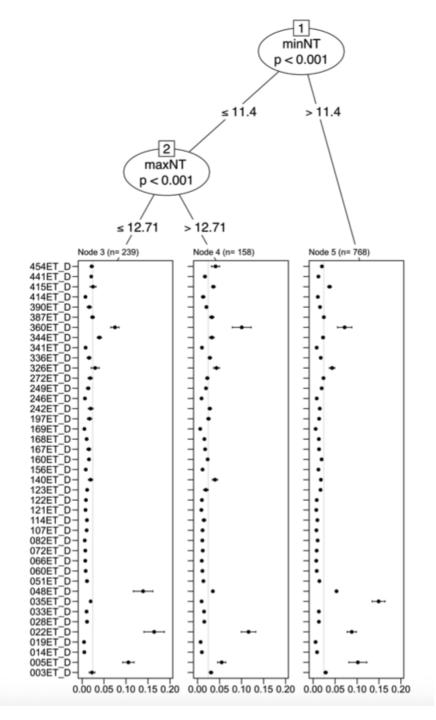
Durum wheat Ethiopia 41 genotypes

3 seasons

1,100 farmers (~330 per season)



Supplementary Figure 15. Location of origin of the top 41 durum wheat (*Triticum durum* Desf.) genotypes selected for the decentralized trials.


Mancini et al. (2017) Scientific Reports <u>https://doi.org/10.1038/s41598-017-07628-4</u> de Sousa et al. (2021) Comms Biology <u>https://doi.org/10.1038/s42003-021-02463-w</u>

#2 Locally adapted genotypes

Selection of durum wheat genebank accessions with higher local adaptation in Ethiopia.

34

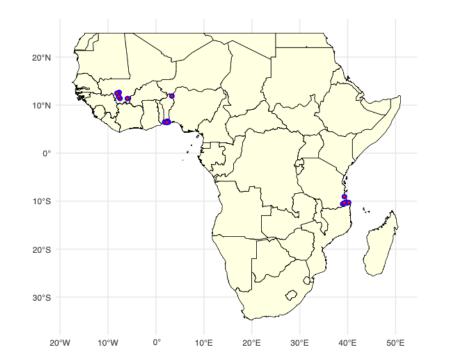
#3 Consumers' preference

Cassava (gari-eba) Nigeria 10 genotypes 1,001 participants

data with breeding data

Figure 6. Plackett-Luce tree of consumers' preference for Eba samples derived from ten cassava genotypes (Experiment 3). Splitting covariate selected by the model-based recursive partitioning approach applied to ethnic group. The x axis shows log-worth with genotype Akpu as reference (log-worth set to 0). Intervals are based on guasi-variance estimates.

#3 Consumers' preference


Node ^a	Feature	Estimate	Standard error	z value	Pr (> z)	
2	(Intercept)	0.000	NA	NA	NA	
	Solubility	-16.156	5.414	-2.984	2.84E-03	**
	L* gari	0.335	2.016	0.166	8.68E-01	
	a* gari	1.482	0.596	2.487	1.29E-02	•
	b* gari	0.076	0.255	0.298	7.65E-01	
	Cohesiveness	-43.119	130.407	-0.331	7.41E-01	
	Gumminess	0.096	0.793	0.121	9.04E-01	
	Chewiness	0.130	0.467	0.279	7.81E-01	
	Hardness	-0.078	0.281	-0.276	7.83E-01	
	Adhesiveness	-0.019	0.165	-0.117	9.07E-01	
3	(Intercept)	0.000	NA	NA	NA	
	Solubility	-3.611	1.591	-2.269	2.32E-02	
	L*gari	1.037	0.204	5.079	3.79E-07	**
	a* gari	1.699	0.322	5.271	1.35E-07	**
	b* gari	-0.096	0.015	-6.198	5.72E-10	**
	Cohesiveness	31.817	5.951	5.346	8.98E-08	
	Gumminess	-0.068	0.044	-1.568	1.17E-01	
	Chewiness	-0.094	0.067	-1.398	1.62E-01	
	Hardness	0.026	0.012	2.289	2.21E-02	*
	Adhesiveness	-0.030	0.021	-1.441	1.50E-01	

^a Node 2 includes participants from Hausa, Ibo, Igbira, and Tiv groups. Node 3 has participants from the groups Idoma, Igede, and Yoruba. Pr = Probability.

#4 Market segments in traditional vegetables

Amaranth

Benin, Mali, Tanzania 14 WorldVeg genebank genotypes

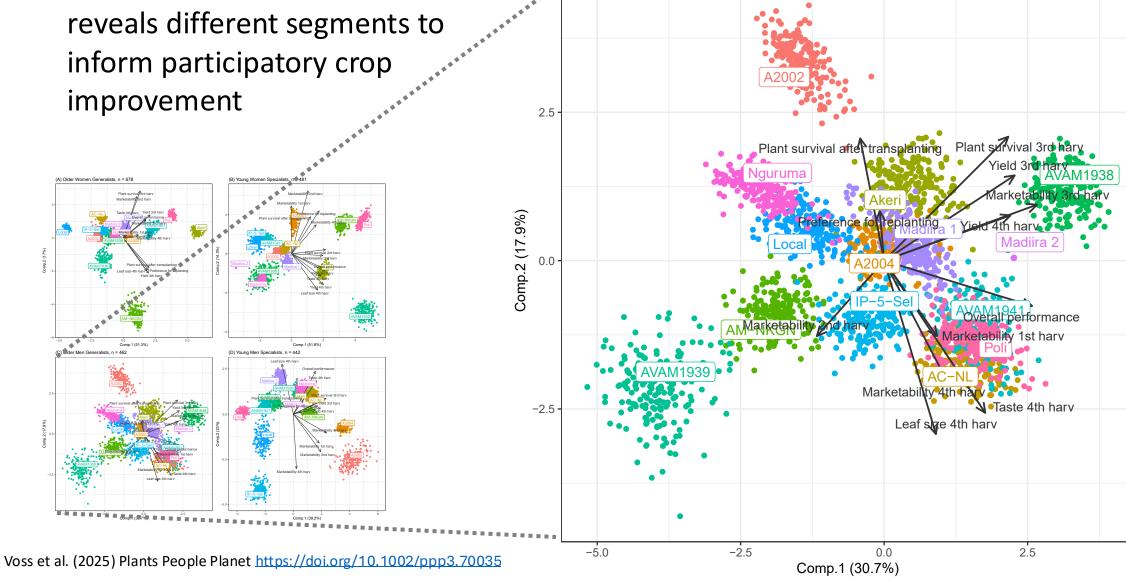

	Segments				
	Older Women	Young Women	Older Men	Young Men	
	Generalists	Specialists	Generalists	Specialists	
Average Age (years)	43	35	45	34	
Dominant Gender	Woman	Woman	Man	Man	
Who Controls Sale	Woman	Woman	Man	Man	
Who Controls Production	Woman	Woman	Man	Man	
Avg. Income Crop Share (%)	21.59	35.42	14.17	29.01	
Avg. Experience with Crop (years)	1.18	6.2	5.52	8.95	
Characteristics	Women with significant control over both sale and production, moderate income share from amaranth, relatively less experience in amaranth farming.	Younger women highly involved in both production and sale, highest income share from amaranth, and substantial experience growing amaranth, indicating specialization.	Predominantly men with considerable experience in amaranth farming, control over both production and sale, but the lowest average income share from the crop.	Younger men with high experience, significant income share from amaranth, control over both production and sale, indicating specialization.	

Table 4. Demographic and socioeconomic characteristics of farmers segments in amaranth production in Benin, Mali, and

Tanzania.

#4 Market segments in traditional vegetables

Farmers' socio-economic data

(C) Older Men Generalists, n = 462

In summary

- Tricot is a citizen science approach built on a multi-institutional partnership.
- It enables scaling of decentralized trials by offering a robust experimental design and straightforward data capturing approach.
- Farmers are exposed to crop diversity and assess it under their local conditions.
- On-farm/consumer preference data can be linked to several other datasets to explain how and why farmers/consumers take decisions.

Thousands of farmers doing research together

tricot approach

Guide for large-scale participatory experiments

Further reading

https://1000farms.net

https://community.1000farms.net

https://climmob.net/blog/wiki/?post_type=st_faq

https://climmob.net/blog/wiki/climmob-and-tricot-resources/

Thank you!

Kauê de Sousa, Ph.D.

k.desousa@cgiar.org

